「千人千面」技術也可以簡單理解為「推薦演算法」, 是一種基於用戶行為的大量樣本統計和協同過濾,對用戶需求進行預測的技術。
接觸到「千人千面」是在09年底,當時剛從淘寶店主進入B2C領域成為職業經理人。在學習電商行業知識和實踐的過程中,發現亞馬遜的「千人千面」,覺得特別有意思。
2009年,經過5年發展的淘寶已擁有了百萬賣家和過億的SKU。
對於快速發展的淘寶我有一個非常大的困惑和疑慮:不斷增長的賣家和商品似乎永無止境,可是作為買家在沒有上限的賣家和商品中,如何更高效率地找到自己喜歡的和真正需要的?
畢竟越來越多的數據表明,搜索結果買家基本上在第三頁就很少再往後翻頁查看其它商品。
除了搜索,買家獲取商品的其它方式主要是:通過點擊「類目」進入;促銷和專題頁;廣告位。
這個困惑和疑慮我始終在思索,卻無法找到解決方案。最終它卻成了淘寶的「搖錢數」,淘寶直通車和鑽展賺得盆滿缽滿。
縱是如此,仍然覺得這個矛盾遲早會出問題的。
大洋彼岸的美國亞馬遜的「千人千面」技術正好可以解決這個問題,這讓我興奮不已,開始進行學習和研究。
10年底被獵頭挖到北京之後,發現當時北京的噹噹、京東甚至亞馬遜中國還在跑馬圈地的初期,而且流量紅利和PC時代越來越大的屏幕空間也使得這個矛盾並沒有這麼突出。
我則投身到家居建材和百貨行業線上線下結合的實踐當中,偶爾遇到研究「千人千面」的技術人員,會進行一些簡單的交流。
中國傳統電商的 「千人千面」簡史
直到移動互聯網時代的到來,面對3寸的小小智能手機屏幕,縮小版的淘寶、天貓、京東、噹噹們都顯得異常擁擠、體驗極差,消費者紛紛逃離,有些開始回歸正在熱火朝天開店的線下購物中心和新業態的實體店。
而且隨著微信的用戶規模不斷快速增長,基於微信的電商SAAS開店工具和微信去中心化的結合,同樣繼續分流傳統中心化電商的商家和用戶。
12年,馬雲急得叫嚷著要通過「來往」的社交軟體把企鵝趕回南極。劉強東則選擇在14年上市前讓騰訊成為第一大股東,獲得微信和QQ重要的流量入口。
馬雲不僅沒把企鵝趕到南極,「來往」和接班人陸兆禧在不到兩年時間沉寂,成為移動互聯網發展初期阿里成立以來最大的敗筆。
張勇接棒后,馬雲開始提出新零售和「五新戰略」,避開微信的正面戰場,轉戰線下。
淘寶新掌門,80后的蔣凡同台登場,「千人千面」計劃開始進入落地實施階段。並且尋求社交電商的突破,有了現在一直獨秀的淘寶直播。
同期,京東在獲取微信的流量過程中,發現原來的問題並沒有被解決,流量分配模型完全不同於PC大屏時代。
於是啟動「千人千面」計劃,試圖解決流量分配和轉化率問題,以期提升用戶體驗並讓用戶重回京東,保證一定程度的增長率。
到18年,中國真正做出「千人千面」擁有相應的成熟技術的只有淘寶和京東。
隨著拼多多在18年的成功上市和獨立app的發展,拼多多成為中國第三家擁有「千人千面」技術的電商公司。(騰訊和今日頭條同樣擁有「千人千面」技術,但是和電商的比起來,資訊類的要相對容易一些)
「千人千面」到底有多難?
「千人千面」技術也可以簡單理解為「推薦演算法」, 是一種基於用戶行為的大量樣本統計和協同過濾,對用戶需求進行預測的技術。由於電商涉及「轉化率」,「推薦演算法」需要對這個指標負責,所以實現的難度比資訊類的大得多。
從買家角度而言,這種技術會讓用戶真正高效地獲取需要的、感興趣的商品;從賣家角度而言,則可以擴展競爭維度,減少單一維度(排名)的競爭壓力,投入更少獲得更高銷售。
最重要的是,長尾商品通過「千人千面」真正能夠公平地展示在消費者面前併產生購買。
《長尾理論》是中心化電商發展的重要理論,經過近30年的發展,已經到了長尾理論2.0的階段。
我在《嚴選精品電商們崛起,長尾理論失效了嗎?》一文中對長尾理論2.0進行了較為深入的研究,得出的結論就是長尾理論仍然有效。(對長尾理論想更多了解的朋友,可以點擊文章標題閱讀或直接購買對應的專業書籍閱讀)
讓我們從簡單的場景來理解「千人千面」技術:
- 比如你用高德地圖導航到大潤發,買了大米、油和速食麵並用支付寶付款,下次你再打開淘寶,首頁就出現了盒馬菜市場和麵條等商品的推薦;
- 比如你和女友在微博私信說想換新手機了,打開天貓就給你推薦了最新款的手機;
- 比如女友在微信發了個朋友圈說好喜歡新款LV包,然後第二天看到了LV在朋友圈的新款女包廣告。
諸如此類,都屬於「千人千面」的「推薦演算法」根據個人的行為數據精準推薦相應的商品和信息。
或許這些場景讓人感覺個人隱私信息被泄露了。其實像淘寶、京東、天貓這樣的電商平台和微信、微博這樣的社交工具和社交媒體本身不會竊取你的個人隱私的,但是你的行為數據讓平台知道你的需求,然後通過「演算法」進行商品和信息的推薦。
電商平台會採集更多個人行為數據,比如使用過的手機、上過的app、看過的新聞、打車的頻率、發紅包的金額次數、欠銀行的貸款、地圖數據等等,這些都會構成一個人數以萬計的事實標籤。
標籤的採集和架構設計相對還是容易的,如何建立標籤模型並準確的預測用戶的需求則是最難的。
以下技術部分參考了CSDN的技術博客及結合我個人的研究和理解,歡迎感興趣的朋友留言參與討論和交流。
我們拿淘寶首頁內容板塊為例,常規的行為推薦演算法是類似這樣的公式:內容訪問權重=行為權重*時間權重*衰減因子
行為權重:點擊一件商品或一篇文章,留言、點贊、加購物車等行為,都會計入行為權重,根據平台積累的大數據,計算出了不同類目不同產品下的各種操作行為權重分數,在用戶進行回復,點贊,收藏等行為時進行權重加分。
時間權重:停留時間越長,時間權重也會越高。
這也能解釋為什麼電商平台和內容平台適合做「千人千面」,因為都在追求停留時間,電商平台的停留時間長有利於提高轉化率,內容平台的停留時間長有利於廣告點擊。
衰減因子:用戶的單次行為不能作為用戶喜好的直接評定,隨著時間的推移權重也會慢慢衰減。
由這三個權重維度的綜合計算得到了我們的內容訪問權重,在我們多次訪問同類型內容時,每次都會獲得對應的內容訪問權重,平台對這些權重進行累加,然後利用神經網路的閾值函數(Sigmoid函數)進行標準化。
然後可以得到一個閾值為(0,1)的結果,通常推薦演算法標準化過程是對Sigmoid函數的變形公式,得出一個閾值位0-10的結果,也就是我們所說的質量分(淘寶直通車的質量分也是以這樣的方法計算來的)。
權重(或說質量分)越高,內容板塊推薦類似內容的比例和頻率就會越高,這就是行為推薦演算法(你的行為影響了你)。
目前已知世界上所有推薦演算法的處理過程都是類似如此的,沒有太大差異。
另外需要簡單說明的是拼多多的拼團模型在進行「千人千面」的實施過程中,人的社交關係將成為新的數據源,這個部分可以讓推薦比淘寶、京東、天貓更精準。(詳見深度分析文章《拼多多的底層價值邏輯》)
這個過程,也就是大家常說的打標籤(比如我們搜索看過一個產品后,猜你喜歡就會推薦類似的產品,並且看過多種產品,猜你喜歡推薦的頻次是不一樣的)。
限於篇幅,關於「千人千面」技術部分就不再過多贅述,如果想進一步學習的,可以到專業的技術論壇和博客深入學習,或者買一些專業的書籍好好看看。
傳統電商平台「千人千面」的問題
前面之所以花這麼長的篇幅來分析「千人千面」,主要得出三個結論。
(1)隨著電商平台的用戶規模、商家規模和商品規模的無窮增長,「千人千面」技術很好地解決了三者匹配和效率的問題,從而提升電商的轉化率和用戶體驗。
(2)「千人千面」實現的難度非常大,一方面非常有足夠的用戶、商家和商品數據;另一方面要有強大的演算法建模能力;最後還要有硬體的算力支持(阿里雲、亞馬遜雲發展的領先這是主因)。
(3)「千人千面」看起來很美好,卻有三個技術無法突破的問題:
- 沒有想像中「精準」。因為購物決策受到的干擾因素太多,現階段均是「網路行為」的數據,並沒有「思維數據」和「生物數據」,機器無法感知人真實的感受和想法;
- 延遲問題。畢竟聊天或者瀏覽的那一刻到打開電商平台短短几秒時間,購買決策已經發生了很大的改變,甚至是沒打開就變化了。人們總習慣:我只是說說而已;
- 涉及隱私問題和歧視且是違法行為。《電商法》明確規定:電子商務經營者根據消費者的興趣愛好、消費習慣等特徵向其推銷商品或者服務,應當同時向該消費者提供不針對其個人特徵的選項,尊重和平等保護消費者合法權益。就是說,如果強制推送根據「大數據」推算出的內容給消費者,是違法的!
其次,作為線下的傳統零售商和新興電商公司,很難實現這樣的「千人千面」,哪怕是有錢也沒有那麼多的演算法和技術人才。這些人才都被BATJ、TMD們早早地收了。
如何突破技術和人才壁壘實現「千人千面」?
根據觀察和研究,新興的社交電商和社區團購(含傳統零售商做的社交電商和社區團購)從「微信群」的方向實現了「千人千面」。
在去年我就成了每日一淘的VIP,在今年又加入了環球好貨的VIP,並在近一年左右的時間裡加入了幾個社交電商和社區電商的群。
發現成交率高的「群」有四個特點:
- 微信的群沒有上限,一個人想建多少個都可以,而且沒有門檻,建群非常簡單;
- 以「人分」、「小區分」、「品類分」等等可以不斷按照不同屬性和維度細分的各種各樣的群;
- 通過群里聊天的去中心化「社交」方式,獲取單個個體真實的需求並通過群主(團長)從不同的社交電商或社區團購平台獲取對應的商品並進行推薦;
- 由於是基於「人」的唯度,所以除了購買商品之外,還可以群里聊聊寵物和小孩教育,這種「千人千面」變得有溫度。
藉助幾萬人、幾十萬人建立幾萬個、幾十萬個甚至幾百萬個群實現「千人千面」不僅在理論上成立,也能真正落地。
已經有社交電商和社區團購企業完成了這種規模的「群」的建立,並取得年銷百億甚至千億級銷量。這些並不需要用到傳統電商平台的「千人千面」技術投入和研發周期。
當然,隨著VIP代理和「團長」們理論上的數量無窮增加,後台的商品的無窮增加,或許到了一定規模之後,傳統電商平台針對VIP代理和「團長」們的「千人千面」技術也會被提上日程。
那個時候這些社交電商和社區團購平台將再次變得「傳統」,新的挑戰者又該出現了!
專欄作家
作者:庄帥(個人微信:zhuangshuaidu),微信公眾號「庄帥零售電商頻道(ID:zhuangshuaiec)」,前沃爾瑪(中國)、王府井百貨電商高管,中國百貨協會無人店分會客座顧問、中國電子商務協會高級專家,專註零售電商商業研究。